Enabling Inertial Response of Variable-Speed Wind Turbines: A Survey and New Perspectives
نویسنده
چکیده
Abstract: With the rapid development of wind power generations, the inertial response of wind turbines (WTs) are widely concerned recently, which is important for grid frequency dynamic and stability. This paper recognizes and understands the inertial response of type-3 and type-4 WTs from the view of equivalent internal voltage, in analogy with typical synchronous generators (SGs). Due to the dynamic of the equivalent inertial voltage different from SGs, the electromechanical inertia of WTs is completely hidden. The rapid power control loop and synchronization control loop is the main reasons that the WT's inertial response is disenabled. On the basis of the equivalent internal voltage's dynamic, the existing inertia control method for WTs are reviewed and summarized as three approaches from the view of WT's control, i.e. optimizing the power control or synchronization control or both. At last, the main challenges and issues of these inertia controls are attempted to explain and address.
منابع مشابه
Intelligent Control for the Variable-Speed Variable-Pitch Wind Energy System
In this paper, a new type of multi-variable compensation control method for the wind energy conversion systems (WECS) is presented. Based on wind energy conversion systems, combining artificial neural network (ANN) control and PID, a new type of PID NN intelligent controller for steady state torque of the wind generator is designed, by which the steady state torque output is regulated to track ...
متن کاملEffect of Wind Speed and Load Correlation on ELCC of Wind Turbine Generator
Utilization of wind turbines as economic and green production units, poses new challenges to the power system planners, mainly due to the stochastic nature of the wind, adding a new source of uncertainty to the power system. Different types of distribution and correlation between this random variable and the system load makes conventional method inappropriate for modeling such a correlation. In...
متن کاملDesigning a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed
One of the main tasks of the control systems in the wind turbines is to maintain the power of the wind when its wind speed proceed its nominal value. Because the failure to maintain the power in its nominal value in the region of the turbine curve damages the turbine and increases the mechanical stress. This object is obtained by controlling the pitch angle in the third region of the turbine cu...
متن کاملQuantifying the Aggregate Frequency Response from Wind Generation with Synthetic Inertial Response Capability
Modern variable-speed wind turbines, although decoupled from the system frequency, can respond to significant power imbalances through power electronic controls as synthetic inertial or governor-like droop responses. However, frequency response capabilities from wind power plant cannot be considered a direct replacement for traditional frequency responsive services. Before such capabilities sho...
متن کاملPMSG Based Wind Turbines Control for System Inertial Response and Power Oscillation Damping by Fuzzy
To enhance the inertial response and damping capability during transient events this paper investigates an improved active power control for variable speed wind turbines. The optimized power point tracking (OPPT) controller, which swings the turbine operating point from the maximum power point tracking (MPPT) curve to the virtual inertia control (VIC) curves by the frequency deviation, is propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016